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FLIGHT TESTING AND REAL-TIME SYSTEM IDENTIFICATION

ANALYSIS OF A UH-60A BLACK HAWK HELICOPTER WITH AN

INSTRUMENTED EXTERNAL SLING LOAD

Allen H. McCoy

I. INTRODUCTION

SUMMARY

Helicopter external slung load capabilities are crucial to many civilian and military operations.

As such, it is of great interest to both the research and the operational worlds to increase the

understanding of the dynamic interactions that exist when a helicopter is coupled with a slung

load. The two main concerns being the safety of the crew and aircraft and the continual drive to

decrease the costs associated with qualifying loads, slings, and helicopters for external cargo

operations. In an effort to address some of the unique aspects of this area, the U.S. and Israel

joined efforts through a Memorandum of Agreement. This thesis presents the results from the

first series of flight tests conducted in support of this project. In particular, the effect of the

suspended load on the helicopter's handling qualities and its control system's stability margins

will be addressed. Load pendulum motion is analyzed. Also, presented is a discussion about the

setup and use of CIFER ® for near real-time data analysis.

A.BACKGROUND

The helicopter external air transportation (HEAT) of cargo by both the military and the civilian

market can be traced nearly to the beginning of the history of the helicopter itself. With the

ability to handle heavy, oversized loads; to reach areas inaccessible by ground transportation;

and to provide fast transit times; helicopter external load operations have found a home in such

civilian industries as lumbering, construction, fire-fighting and oil exploration. In the military,

HEAT is crucial to the success of the tactical transport and supply missions (fig. 1.1).

Historically, the certification of a load, suspension system and helicopter for external air

transport has been accomplished through flight testing (ref. 1). This is not only a time consuming

task, especially considering the multitude of load, sling and helicopter combinations, but one

which can be costly and dangerous. Even with prior flight clearance, problems with load and

helicopter stability, sometimes with catastrophic results, arise when operational conditions do not

match those of the original qualifying flight test.



Figure 1.1.U.S.NavyH-46DPerformingVertical ReplenishmentatSea(VERTREP).

Certificationof all Departmentof Defense(DOD) externalloadsis theresponsibilityof the U.S.

Army Research, Development, and Engineering Center at Natick Maryland per the Joint

Logistics Commanders Memorandum of Agreement on External Helicopter Transported Loads.

This organization qualitatively assesses and certifies specific load and lifting configurations.

No quantitative evaluation of stability margins or handling qualities is made (ref. 2).

As computers and modeling techniques advance it is a natural extension to apply these

capabilities to helicopter external slung loads operations. To improve current simulations, it is

necessary to improve the level of understanding of how the load, sling and helicopter interact.

Some of the influences include; load weight and inertia, load aerodynamic characteristics, load

mass as a fraction of the helicopter mass, sling configuration, length and elastic properties,

helicopter dynamics and the power margin of the helicopter. Flight test data and system

identification offer invaluable insight into these effects as well as provide the means to validate

the model. This validated model can then be applied to estimate the expected helicopter and sling

load flight envelope and in this way, pinpoint potential stability problems prior to flight testing.
The obvious benefits are those of reduced cost and increased safety.

The U.S. Army and the National Aeronautics and Space Administration (NASA), in cooperation

with the Israeli Air Force and Technion University, under a Memorandum of Agreement (MOA)

have initiated a program to advance these concepts. This thesis presents initial results from the

first phase of flight testing performed in support of this project.

B. UNITED STATES / ISRAELI MEMORANDUM OF AGREEMENT

Initial cooperative efforts between the United States and Israel began in October 1986 with an

investigation of the effects of biodynamic interference on panel-mounted and helmet-mounted

displays. As follow-on to that project, a formal three-year agreement was drafted and signed in
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November1988.Due to thecontinuedsuccessof this initial endeavor, four years later in

November 1992, a nine-year MOA for cooperative research on "Rotorcraft Aeromechanics and

Man-Machine Integration Technology" was signed. This agreement was designed to bring

together academia, industry and government research laboratories of both countries to work

jointly on basic areas of research in the rotorcraft field. At present, nine specific research projects

are identified. Three of these "Task 1: Biodynamic Interference in Helicopter Displays," "Task

3: Human Factors Aspects of Thermal Imagery Interpretation," and '`Task 6: Active Armor

Concepts" have been completed. The six remaining active programs are (ref. 3):

• Task 2: Rotorcraft Flight Mechanics Modeling

• Task 4: Unsteady Flow Control

• Task 5: Coupled Rotor/Airframe Analysis for Preliminary Design

• Task 7: Human Vision Modeling

• Task 8: Flight Mechanics of Helicopter/Sling-Load Systems

• Task 9: Human Performance Modeling in MIDAS

The study of helicopter external load operations falls under Task 8. This task was included in the

MOA in 1995, in an effort to address some of the issues identified above in the Background. The

main objectives of the task are (ref. 4):

• Study basic flight mechanics of rotorcraft/sling load systems.

Develop numerical simulation modeling techniques, validated by flight test and system

identification, which can accurately estimate the expected helicopter/sling load envelope in

advance of flight testing.

• Develop near real-time data analysis capability for verifying aircraft and load stability

margins during envelope confirmation flight testing.

• Analytical investigation of the potential of load stabilization, both passive and active, for

improving mission performance.

• Use the numerical simulation to further investigate twin-lift operations to include

performance, stability, pilot workload, and other related issues.

The main thrust of the U.S. efforts in support of Task 8 is to conduct the flight tests of a UH-60A

Black Hawk helicopter with a range of external loads. These tests provide the opportunity to

demonstrate the capability of near real-time analysis of the aircraft and load responses, using off-

the-shelf technology. The specific goals of the analysis are to determine the effect of the load on

both the handling qualities of the helicopter and on the control system's stability margins, as well

as to characterize the motion of the load. A long-term goal is to extract the aerodynamic

3



propertiesof the loadfrom theflight testdata.Thisdata,alongwith analysis,will thenbeusedin
supportof thesimulationefforts.
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II. TEST EQUIPMENT

A. HELICOPTER DESCRIPTION

1. General

A Sikorsky UH-60A "Black Hawk" helicopter, Army serial number 83-23748 abbreviated to

NASA 748, was utilized for this flight test program. This aircraft was employed for the previous

ten years as the test bed for the joint U.S. Army and NASA "Aidoads Project" which completed

flight testing in 1994. The major system elements of the rotating data system (RDAS) were

removed from the aircraft, while the aircraft data system (ADAS) remained intact. The ADAS

is capable of providing over one hundred channels of pulse code modulation (PCM) encoded

data from a full suite of existing sensors appropriate to a wide range of potential flight projects

(ref. 5). A listing of the signals monitored during test flights is contained in Appendix A.

Figure 2.1. UH-60A Black Hawk helicopter general arrangement (after ref. 6).

The Black Hawk's primary mission for the U.S. Army is the tactical transport of troops, supplies

and equipment. Its general configuration is shown in figure 2.1 and the major specifications and

aircraft parameters are listed in table 2.1. The main and tail rotor systems each are comprised of

four titanium/fiberglass blades. The drive train consists of a main transmission, intermediate

gearbox, and tail rotor gearbox with interconnecting shafts. The aircraft is powered by two T700-

GE-700 gas turbine engines with a maximum take-off power rating of 3,086 shaft horsepower

(ref. 6) Other than the test instrumentation package installed on this aircraft, it is similar to Black

Hawks currently operating in the field with the U.S. Army.



Table2.1.NASA 748/UH-60Ageneralspecifications(from refs. 6, 7, & 8).

Empty Weight

Fuel Weight, Typical

Crew Weight: 2 Pilots, 1 Crew Chief

Takeoff Weight, Typical

Maximum Takeoff

11,563 Ibs

2,446 lbs

600 lbs

14,609 lbs

20,250 lbs

Engines (2)

Maximum T.O. Rating

Maximum Useable Power

T700-GE-700

3,086 SlIP

2,828 SlIP

Maximum Hook Capacity 9,000 lbs

Rotor Parameters Main Rotor Tail Rotor

Radius (ft) 26.83 5.5

Chord (ft) 1.73 0.81

Solidity 0.082 0.188

Number of Blades 4 4

Rotor Rotational Speed (rad/sec) 27.02 124.54

Tip Speed (ft/sec) 725 685

Hinge Offset Ratio 0.047 ---

2. Cargo Hook

The standard UH-60A cargo hook was modified to include a load cell for determination of in-

flight loads exerted on the hook. The system installed was an E-79 Electronic Load Weigh

System from Onboard Systems of Portland, Oregon. It consists of a cockpit indicator; a load cell

built into the cargo hook and an interconnecting wiring harness. The signal from the load cell

was patched into the ADAS and included as an additional channel of recorded and telemetry

data. Figure 2.2 shows the cargo hook and the basic weigh system components. The hook is

installed along the helicopter's centerline at fuselage station 353.0 and is certified for a

maximum load of 9,000 pounds. The hook can rotate about the longitudinal axis and cable

angle should be limited to 30-degrees in pitch to avoid damage to the keeper (ref. 6).
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210-095-00 _To Aircraft Power
\ __To Aircraft Back

_[,_ ) _ _.-_r.l_ ToOpdonal
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270 062-00
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210-101-00 , _d Cell

\ ,/-o o

Figure 2.2. UH-60A cargo hook with weigh system installed (from ref. 9).

B. LOADS

Four loads of varying sizes and weights flew as part of the test program. Load weights range

from 1,070 pounds up to 6,164 pounds and they all are listed in table 2.2. Figure 2.3 gives a good

perspective of the various sizes of the loads, from a flat plate to a container express box

(CONEX).

Weight 0bs)

Table 2.2. Test load and sling weights.

Block Loads CONEX 10K Capacity

1K 4K 6K 2K 4K 4-Leg Sling

1,070 4,154 6,164 1,794 4,105 52

Note: 1. Sling weight not included in load weights.

2. CONEX weight includes all instrumentation.
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Figure2.3.Testloadsandsling(L to R, 1K, 4K, 6K, andCONEX).

1. CONEX

Theprimaryloadfor this projectis commonlyreferredto asa CONEX(containerexpressbox)
(ref. I0). It is abasicsteelcontainer,8.5x 6.4x 6.1feet,with afiat floor androof andcorrugated
sidesasseenin figure 2.3.For determinationof its centerof gravity (CG),it is modeledasabox
with its massuniformly distributedthroughoutthesides,topandbottom.Detailedthree-view
drawingsareincludedin AppendixB.

TheCONEXwasselectedfor severalreasons.First,with anemptyweightof 1800poundsand
thecapabilityto be loadedto weightsin excessof 6,000poundsit providesaconvenient
platformto studytheeffectof changingloadweightswithout alteringthebasicgeometry.
Second,ashelf couldbeeasilybuilt insideto supportthe instrumentationpackage.Third, it
provideda simplegeometricshapewith significantaerodynamicproperties,whichcould be
easilymodeledfor wind tunneltestingto beconductedin Israel.Finally, it is representativeof
someoperationalloadscurrentlybeingtransportedexternallyby helicopter.

A few minor modificationsweremadeto theCONEXto facilitateinstrumentationinstallation
andimprovedsafety.A shelfwasinstalledinsidethebox.Constructedof aluminum,the shelf
wasdesignedto survivea 2.25gload.Incorporatedinto thedesignwastheability to raiseand
lower theshelfto accommodateachangein centerof gravity.A magneticcompass,which
providedtheloadheading,wasmountedonanaluminumboomattachedto therearof the
CONEXto reducethemagneticinterferenceeffectsof thesteelbox.Thedistanceawayfrom the
box wasdeterminedthroughtrial anderrorwith theassistanceof thecompass'built in
calibrationprocess.The antennafor transmissionof thetelemetrydatawasplacedon thefront
wall, oppositethecompass,andwascoveredby asmallkevlarbubble.Forsafetyconsiderations
andfor thebenefitof theground/hook-upcrew,ahandlewasinstalledoverthedoors.This
provideda solidhandholdwhenclimbing upon to or downfrom thetop of theCONEX.
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2. Solid Block Loads

Three solid block loads were also flown at various stages of the flight test program. As stated in

Table 2.2, their respective weights are 1,070 lbs, 4,154 lbs and 6,164 lbs. These loads provided

the opportunity to isolate and study just the effect of varying weight with minimal influence from

aerodynamic forces. The blocks were assumed to generate negligible aerodynamic specific

forces and moments and were demonstrated to be stable over the range of airspeeds flown. The

blocks are constructed of steel and concrete. The small lk load was suspended from the

helicopter with a standard 20-foot long single pendant sling with a four-leg bridle. As with the

CONEX, the 4k and 6k loads each were suspended from the helicopter using the four-leg sling

described below.

C. LIFTING SLING

A standard U.S. Military 10,000-pound capacity sling was acquired for the test as the baseline

configuration. It consists of an aluminum apex fitting (shackle) joining four legs together. Each

leg is comprised of a twelve-foot long, 7/8-inch diameter nylon rope, with eye splices at each

end, a grab-hook, and an eight-foot chain (fig. 2.4). The sling weighs 52 pounds. Each leg has a

2,500 pound capacity.

As shown in figure 2.4, the chain is doubled back through the lift point back to the grab-hook.

For test standardization and safety, the sling was attached to the load in accordance with the

"Multi-Service Helicopter External Air Transport: Basic Operations and Equipment Manual"

(ref. 10). Attached in this fashion, the overall unloaded static length of the sling, from the lift

point to the aircraft cargo hook was approximately 16.75 feet. Figure 2.5 illustrates the basic

sling-load geometry for the 4k block and CONEX.

Figure 2.4. Standard U.S. military 10,000-pound, 4-leg sling (after ref. 10)].



Shackle

P

Load

A

B

#

Z

DIMENSION 4K BLOCK 2K CONEX 4K CONEX

AB 16.75 16.75 16.75

AE 16.65 16.01 16.01

AF 17.25 19.21 20.75

BC 2.64 8.12 8.12

BD 2.64 5.61 5.6 I

a 1.47 3.06 3.06

b 1.47 4.25 4.25

c 0.61 3.20 4.74
NOTES: I. All dimensions in feet.

2. Sling stretch neglected.
3. 4K CONEX ballast, 43 bags of spill absorbent material.

Figure 2.5. Sling-load geometry.

Limited data is available in regards to the spring constant and natural frequency of the sling.

Dynamic testing of the sling performed at the NASA Ames calibration laboratory concluded that

the spring constant of the four-leg sling varies with applied load (ref. 11). Tests conducted by the

U.S. Army Aviation Troop Command, Directorate for Engineering, Ground Support Equipment

Branch also concluded "the spring rate increases with load and with repeated application of load"

(ref. 12). Results from the Ames test are listed in table 2.3. Investigations are ongoing into the

effect age and use have on the characteristics of slings of this type.
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Table2.3.Resultsfrom NASA Amescalibrationlaboratorydynamicslingtests(ref. 11).

Load Weight Natural Frequency Damping Spring Constant
(lbs) (Hz) (lbs/in)

701.45 4.843 0.0157 1839

4197.0 2.54 0.0269 3215

In an effort to obtain more information about the sling's elastic properties, a static suspension

test was performed using each test load. Sling leg elongation up to 0.86-foot was recorded when

the 6K block was suspended. The range of elongation for application of all four loads is between

one to five percent. During the test, however, no time was allocated for the sling to "relax"

between lifts. When the CONEX was lifted just after the 6K block, the amount of stretch was

significantly less than the lighter 1K block, which was the fu'st lift. This inconsistency is due to

the build up of the hyteresis in the sling legs. This problem is seen as the dip in the data

presented in figure 2.6, where the number above the data points indicates the lifting order.

Although these sling parameters are important to the overall task and future simulation modeling,

the inconsistencies in the sling data did not play a critical role in this phase of the project. The

concern at this point is the pendular characteristics of the slung load, which has a natural

frequency around 0.24 hertz (1.5 rad/sec), well below the stretch frequencies.

6
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Figure 2.6. Stretch test of the 10,000-pound capacity, 4-leg sling.

In an attempt to eliminate the wind-up of the sting legs in flight due to the yaw rotation of the

CONEX, a swivel (fig. 2.7) was installed at the shackle end of the sling. The swivel was load

tested to 10,000 pounds and weighed 25 pounds. Unfortunately, due to the helicopter's rotational

downwash and load aerodynamics, the load developed yaw rates in excess of 50 degrees per

second at hover and 30 knots. Concerns about possible instrumentation lags and the safety of

prolonged flight with the swivel subjected to this condition led to its removal for the remaining

test flights.

11



Figure2.7.Installedslingswivel.

D. LOAD INSTRUMENTATION PACKAGE

The Israeli Air Force Flight Test Center, Instrumentation Department, designed and fabricated

the load instrumentation package as one part of the joint aspect of the MOA. The package was

designed to be compact, lending itself toward easy installation with minimum complexity. The

package was installed on the shelf inside the CONEX without difficulty. Figure 2.8 is a

photograph of the completed installation. Figure 2.9 shows the general layout of the package and

identifies the major components. The main box and platform with instrumentation weighs 90

pounds. Power is supplied by a 24-volt lead-acid aircraft battery weighing 29 pounds. Total

weight of the installed package is 119 pounds. A total of nine data signals are transmitted by the

load, eight signals from the instruments in the package plus the magnetic compass signal. Signal

sample rate is 260 hertz. A detailed list is included in Appendix A.
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Figure2.8.Final installationof instrumentationpackagein CONEX.Notecompassarmon the
right.

1. Dil_dVo_mgel_4eter 8. CTJRai
2. Inclinometer 9. Trlwmblm"
3. lm:Unomzter I0. lqmdloTrmumitter

4. Accelerometer 11. ]DCFOter

5. Rate G_vo 12. laltery Termed
6. PCM Eneoder 13. hller?

7. DC to DC Couverter

TOP VIEW

(Major Compomms)
D7_4WINGNOT FO_.4LE
ALLDIl_dVSIOI_ IN INC_

Figure 2.9. Sling-load instrumentation package.
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E. HELICOPTER INSTRUMENTATION

As mentioned in the description of the helicopter, a full compliment of instrumentation is

installed in NASA 748. Appendix A gives a detailed list of those signals recorded during the

MOA Task 8 test flights. Of particular interest are the control inputs, boost servo output, mixer

inputs, and helicopter attitude and angular rate signals for all axes. Figure 2.10 is a simplified

representation of the helicopter, which identifies the point where some of the signals are

obtained. The sample rate is 209 hertz. The majority of scaling and gains values, some of which

are listed in table 2.4, were obtained from the work done during the "Airloads Project," in which

this helicopter was most recently involved.

\

Figure 2.10. Simplified illustration of signal source locations on NASA 748.
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Table2.4.Gainsandscalingfactorsfor selectedsignals.

ITEM MULTIPLY CONVERT NEW
SIGNAl. cf)r_. I/NITS BY TO SIGNAl.

Longitudinal Stick DI00 Percent 0.1125 Inches XBIN
Lateral Stick DI01 Percent 0.095625 Inches XAIN
Pedals DI02 Perceat 0.056875 Inches XPIN
Collective DI03 Pezoeat 0. 10625 Inches XCIN

Mixer Inputs:
Longitudhaal DM00 Percent 0.02108 Inches DMIXEIN
Lateral DM01 Percent 0.02065 Inches DMIXAIN

Direaional DM02 Percent 0.0189 Inches DMIXRIN
Collective XCIN Inches 0.2025 Inches DMIXCIN

Primary Servo Outputs:
Forward DP00 Percent 0. 0406 Inches PSFWDIN
Lateral DP01 Percent 0. 0327 Inches PS LATIN
Aft DP03 Peromt 0. 0429 Inches PSAFTIN
Tat Rotor R021 Percent 0. 0308 Inches PSTRIN

NOTE: These conversions areextracted flora Mink BMiin md Marie-Alix Dalans-Seaman's
derived variables routine for the UH-60A tutor system Phase HA tests.

DERIVATIONS:

SIGNAL CODE EOUATION UNITS

Boost Servo Outputs:
Longitudinal XEBOOST XBIN * 0.21 Inches
Lateral XABOOST XAIN * 0.24 Inches
Directional XPBOOST XPIN * 0.36 Inches

Collective XCBOOST XCIN * 0.20 Inches

NOTE: These equations were provided by Ma'k Tischler to accotmt for the mechanical
connections betwem the cockpit controls aadthe boost se_,o outputs.

15



F. HELICOPTER VIDEO CAMERA

A small video camera was installed against the starboard side of the cargo hook "hell hole,"

looking down over the load as shown in figure 2.11. The video signal was recorded onboard in

VHS format, as well as transmitted to the ground station. Unfortunately, due to tracking and

reception problems the signal was only available to the flight test engineers when the aircraft was

performing maneuvers at the field. The quality of the onboard video recording was excellent,

however, providing a valuable source of information for post flight analysis.

Figure 2.11. "Hell Hole" mounted video camera (left of the cargo hook).
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III. FLIGHT TEST PROGRAM

A. HISTORY

Shortly after Task 8 was included in the MOA, preparations were made to acquire the necessary

equipment and begin the flight tests. Transfer of NASA 748, a UH-60A Black Hawk helicopter

on extended loan from the U.S. Army, was completed at the end of January 1995. A search for

practical and safe external loads resulted in the acquisition of the 1K block, 4K and 6K blocks,

and the CONEX. A standard 10,000-pound capacity, four-leg sling and 20-foot long single

pendant sling with a four-leg bridle were purchased. The four-leg 10K sling was used as the

baseline sling configuration although initial flight with the 1K block used the single pendant and

bridle sling.

All flight tests took place at or near Moffett Field, Ames Research Center, Mountain View,

California. The first data flight, designated Flight 150, occurred in April 1995, and focused on

initial procedure check out. Since that flight, 18 data flights and three calibration flights totaling

28 flight hours were flown in support of the project. A summary of the test flights is included in

Appendix C. Prior to October 1996, test flights produced data mainly associated with the solid

loads. Between October 1996 and July 1997, NASA 748 was grounded as a result of mechanical

difficulties associated with the flight-control rigging. When cleared for flight in July 1997, data

tests resumed in earnest. Between the end of July and the end of August 1997, eight data flights

were flown, focusing on the CONEX load. Included in this series was a no-load flight (Flight

170) flown at hover, 30 knots and 50 knots, which established the baseline data set.

Flight 173, flown August 1997, concluded this first phase of flight testing in support of Task 8

of the MOA. Prior to beginning the next phase of flight tests, time has been allotted to further

examine the data obtained. From this analysis and based on the original goals of the Task,

additional flight phases will be developed and executed.

B. FLIGHT TEST PROFILE

The analysis of the test data was in the frequency domain. As such, the basic type of test inputs

required for this analysis consisted of frequency sweeps. The frequency sweeps were used to

generate a high quality, frequency response database. Steps and doublets were also conducted

but were not used in the analysis discussed in this paper. They will be used in future analysis for

time domain verification of the resulting models. Testing techniques and methodology are

addressed in detail in reference 13.

The frequency sweeps were manually generated by the pilot applying a sinusoidal input to the

controls, in the axis of interest. Each sweep begins and ends with a period of at least three

seconds of trim data. The sweep is initiated with two complete input cycles at the minimum

frequency. This is followed by a smooth and continuous increase in the frequency up to the

maximum limit planned for the maneuver. By letting the pilots perform the sweeps, the

excitation signals are typically spectrally richer than when the inputs are computer generated.

Actual displacement of the controls remains within the range 0.5 to 1.5 inches, with the focus
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beingonaperceivedcontinuouscontrolmovementby thepilot. To assistthepilot, theco-pilot
callsoutquartercyclesandthegroundtestengineersnotify thepilot uponreaching1.0and2.0
Hz. During thesweep,thepilot attemptsto maintaintheaircraftcenteredaboutthetrim
condition.Figure3.1depictsa typicalfrequencysweepinputandtheresultingaircraftresponse.
A physicallimitation to this sweeptechniqueis therelativelylargeaircraftmotionsat the lower,
longperiodfrequencies(ref. 13).

Thefrequencylimits of thesweepwereestablishedbasedon thefollowing concerns.First, the
naturalfrequencyof thependulummodeof the loadsis estimatedto beapproximately0.24Hz
(1.5rad/sec)(seeSectionIV.D). Second,frequencyrangesof 0.03 to 1.9Hz (0.2to 12rad/sec)
and0.16 to 2.9Hz (1.0to 18.0rad/sec)arerecommendedfor handlingqualitiessimulationand
flight control systemdesignmodels,respectively(ref. 14).Third, the lateralandverticalbending
modesof thefuselageoccurat5.4Hz (33.9rad/sec)and6.2Hz (39.0rad/sec),respectively.
Fourth,themainrotor lag-regressivemodeoccursat2.4Hz (15.1rad/sec)(ref. 15).Therefore,to
avoidpossibleexcitationof thehelicopterstructuralandrotormodesandstill provideawide,
safefrequencyspectrum,arangefrom0.05 to 2.0Hz (0.3to 12.6rad/sec)wasselected.The
resultingperiodof thelow frequencylimit wasthus20seconds,with 5.0secondquarter-cycles.
Thetotal recordlengthwastypically greaterthaneightyseconds,which matchesthelengthof
3-4 timesthemaximumperiodrecommendedby reference13.

7.000 -

6.000 -

5.000 -
I
i

I r i | I

0.0 20.0 40.0 60.0 80,0 100.0

TIM E.230(17:09:,,.33.201 O}

-10.00 -

100.0

Figure 3.1. Sample roll frequency sweep and roll rate response time histories. Upper plot- lateral

stick deflection (SL=) in inches. Lower plot-roll rate (p) in deg/sec.

Step and doublet inputs followed the sweeps. They were typically repeated twice, with the initial

movement in the opposite direction on the second pass. The step input was held long enough to

record about 10 to 15 seconds of data and then the pilot would return the controls to trim. Figures
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3.2and3.3 illustratetypical stepanddoubletinputsandwith correspondingon-axisaircraft
response.
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TIM E.27(15:49:17.9390)
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0.00 5.00 10.00 15.00
TIM E.27(15:49:17.9390)

Figure 3.2. Sample roll step input and roll rate response time histories. Upper plot-lateral stick

deflection (SL_t) in inches. Lower plot-roll rate (p) in deg/sec.

The typical scenario for a data flight began with the crew brief. Required attendees were the

aircrew, load handlers, and the flight test engineers. Main items covered in the brief were the test

plan and any safety items. Following the brief, the pilots finished necessary preparations of the

aircraft. The load handlers positioned the load at the pickup point and powered up the load

instrumentation package. The engineers proceeded to the ground station and ensured all systems

were ready there (see Section I_.C). Once the helicopter was powered up, the pilots initiated the

control throw checks and took the compass calibration data record. With all systems operating,

the crew taxied the helicopter to pickup the load. The two load handlers waited by the load as the

helicopter came to a lower hover over them and the load. If the test load was the CONEX, the

handlers had to climb on top of the box for the hook-up as seen in figure 3.4. As soon as one

handler grounded the cargo hook, the other placed the sling shackle on the hook. When the

handlers were clear of the load, the helicopter lifted it and proceeded to setup at the first flight

condition. A full test card (see Appendix D) consisted of a trim point, followed by three sweeps,

two steps and two doublets. Each maneuver was recorded on the deck and in the aircraft as

detailed in Section III.C. The maneuvers focused primarily in the lateral and longitudinal axes,

although this varied some throughout the program. Once all maneuvers at each test condition

were completed the load was set down and the aircraft taxied into the line. In the chocks, prior to

shut down, a short end-of-flight compass calibration record was made, completing a typical full-

card data flight.
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Figure 3.3. Sample roll doublet input and roll response time histories. Upper plot-lateral stick

deflection (St_t) in inches. Lower plot-roll rate (p) in deg/sec.

Figure 3.4. CONEX hook-up in progress.
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It shouldbenoted,that althoughpilot commentswerewelcomedanddesired,no formal
methodologywasestablishedto obtainqualitativeanalysisof theflights, suchasin aCooper-
Harperrating.Pilot commentsweresimplyusedto adjustthetestplanasappropriateto theflight
conditionsexperienced.

C. DATA ACQUISITION

Extensive effort was put forth to ensure high quality data was available for both the near real

time and post flight analysis. Figure 3.5 illustrates all the major components involved in the

process.

Onbom'd Data and Video Tape

CONEX Box with

Instrumentation Package

Telemetry (Data and Video)
Helo to Groond Station

Switch j
! getdotaJOOLbt. (Selected Records)

_f Monitoraad ]

r [Ultimatie 1" TapeJ

(Taxi to Shu_Jo'._)

. LAN
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,/ (s:sp_2ol fsun-'P=c2°l RcPjsu_sPwc2ol \
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Figure 3.5. Schematic of MOA Task 8 data acquisition process.

Data signals were generated by the helicopter ADAS instrumentation and the load

instrumentation package. ADAS signals were wired directly to an onboard data tape recorder and

transmitted in a pulse code modulation (PCM) stream to the ground station. The load data

telemetry signal was received and recorded both onboard the helicopter and at the ground station.

The two data streams were recorded on separate tracks of the onboard tape. This tape was

utilized as the primary data source for post flight analysis. The video signal from the "hell hole"

camera was recorded directly onboard the helicopter in VHS format. Additionally, it was

transmitted to the ground station.
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At thegroundstation(fig. 3.6),thehelicoptervideosignalwaspatchedto monitorsin thecontrol
roomandto aVHS recorder.Additional videocoveragecamefrom the"pan andtilt" camera
locatedon theantennatowerat thetestfacility. Thiscameraprovidedanexcellentmethodof
observingthetestwhile thehelicopterwasatthefield.

Figure3.6.Groundstationcontrolroom.Shown(L to R) areMark TischlerandLuigi Cicolani,
U.S.Army/NASA RotorcraftDivision, AmesResearchCenter,monitoringreal timestrip charts
duringa testflight for MOA Task 8. CIFER ® was run on "fox-sparrow" located behind Mark

Tischler.

Once received at the ground station, the data signals travel three distinct routes (see fig. 3.5).

First, the raw PCM stream was recorded on an analog tape. This recording was continuous from

initial taxi to final shutdown. Second, the data was processed through the Loral 510 System and

the parallel telemetry acquisition processing system (PTAPS) finally coming out at the strip

charts. These were observed in real time. The final data path lead to the near real time analysis.

By using a trigger switch, one of the flight test engineers started and stopped the recording of

data for each maneuver. Each cycle of the switch created a permanent backup record, which was

stored to disk, and a temporary record, which was stored on "fox-gpx6", a Sun Workstation.

When the engineer running the near real time analysis in the control room was ready, the file was

then transferred via remote copy protocol (RCP) to "fox-sparrow," the workstation on which

CIFER ® was installed. It was during this process that the signals were converted from counts to

engineering units, decimated to a sample rate of 50 Hz, and scaled (see table 2.4). The load

angular rate coordinate transformation was also applied (see Section IV.D) at this time. Once this

manipulation was complete, the record was ready to be processed through CIFER ®. Further

details of this process are discussed in Section IV and Appendix E.
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IV. DATA ANALYSIS

The goals of the analysis of the flight test data were threefold. First, the handling qualities,

bandwidth frequency and phase delay, were determined from the on-axis closed loop responses

of the helicopter, P/_LAr and q/_LON as represented in figure 4.1. These rate responses were then

integrated to produce the roll and pitch attitude responses. The second analysis objective was to

obtain values for the phase and gain margins of the control system for stability analysis. These

were calculated from the control system feedback loop. Third, characterization of the load

motion was accomplished by analysis of the damping and natural frequency of the load

pendulum modes. These parameters were obtained from the response of the transformed load

angular rates to control input, p2'/_LA-r and q2'/_LON (fig. 4.1). The analysis tools employed and the

details of the analysis methodology are described in this section.

H(s)

lffs) SAS _--_

II
LOAD _

c(s) RATE RESPONSES

P, q

TRANSFORMED LOAD RATES

P2" q2'

Figure 4.1. Simplified model of the helicopter and slung load system.

A. ANALYSIS TOOLS

1. CIFER ®

The analysis of the flight test data was accomplished employing the Comprehensive

Identification from Frequency Responses (CIFER ®) integrated software package developed by

Dr. Mark Tischler, U.S. Army / NASA Rotorcraft Division, Ames Research Center. CIFER ® has

been developed and exercised over the past ten years on numerous flight test and simulation

projects including the BO-105, AH-64, and UH-60 helicopters and the XV-15, V-22, and AV-8B

fixed wing aircraft. Over 20 U.S. research/industry organizations currently utilize the CIFER ®

software. CIFER ® allows frequency domain analysis of time history test data through an

interactive framework. It extracts a set of non-parametric input-to-output frequency responses

without a-priori assumptions. The analysis applications of CIFER ® include rapid identification of

transfer function models, spectral signal analysis, handling qualities analysis, determination of

crossover characteristics, and time and frequency domain comparisons of identification versus

simulation model predictions. Also incorporated into the software are routines for response

arithmetic and several methods of data presentation, including plotting. Figure 4.2 illustrates the

basic components of the CIFER ® software package. For the analysis performed here, only a few

of the utilities were utilized (ref. 16).
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Figure4.2.Major CIFER®utilities anddataflow (from ref. 14).

To start, the frequency response for each axis and each set of input and output variables was

calculated in FRESPID. FRESPID calculates the responses though a Chirp-Z Transform (CZT).

The CZT is a flexible form of the Fast Fourier Transform (FFT), which does not require that the

number of time history points and number of frequency points be equal. The CZT also allows the

user to calculate the FFT over any frequency range. As with any FFT the input and output

functions must be bounded, and by ensuring the frequency sweep starts and ends in trim, this

condition was met. When possible multiple sweep records, performed at the same flight

conditions, were concatenated in order to increase the number of averages, reducing the random

error and thus increasing the coherence. This translates into a higher signal to noise ratio and

improved calculated frequency response (ref. 14).

The coherence function is a numerical measure of the accuracy of the frequency response and

was critical to the success of the identification. It is the "fraction of the output that is linearly

related to the input power." The value of the coherence is always less than one. This is due to

three effects; 1) the non-linearity of the actual physical system, 2) the noise associated with the

output, and 3) secondary inputs, including off-axis control inputs and external inputs such as

gusts. A coherence of 0.6 or greateris considered acceptable (refs. 13 & 14).

Current analysis focused on the single input, single output (SISO) approach; meeting the primary

objectives of the analysis by investigating only the on-axis responses of the aircraft and load to

control deflection inputs. For each flight condition, three frequency responses were calculated; 1)

the helicopter's closed loop attitude response, 2) the broken loop response of the control system,

and 3) for those flights with a load, the response of the load. For each of the three, up to five

individual frequency responses were calculated in FRESPID based on selected windowing, one

response for each size window. A window is simply a method of analyzing the signal time

histories in blocks of time. The window is sequenced and overlapped across the entire sweep
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recordor concatenatedrecords.A largerwindow improvesthelow-frequencyidentificationbut
reducesthenumberof averages.This resultsin a poorerfrequencyresponseat high frequencies
whereaveragingisneededto counterlower signalto noiseratios.Smallerwindows,on theother
hand, increasethenumberof averages,improvingthehighfrequencyresponse,but in turn,
degradethelow-frequencyidentification.TheCOMPOSITEalgorithmeliminatesthe needfor
theuserto manuallyoptimizewindow sizeselection.It producesa qualitycompromisebetween
theresponsescalculatedbasedonthechosenwindows.For thenearreal-timeanalysis,only one
window,sizedto 20 seconds,wasselectedandtherefore,COMPOSITE was not required to

optimize the response. For the post flight analysis however, five windows, sized to 10, 20, 25,

30, and 40 seconds, were chosen and COMPOSITE was required in order to produce a single

response. This response was then used for the stability and handling qualities analysis (ref. 14).

The load motion characteristics, damping and natural frequency, discussed in detail in Section

IV.D, were determined by fitting a second order system to the load's frequency response. This

was accomplished through the CIFER ® routine called NAVFIT. "NAVFIT determines the

transfer-function coefficients based on a non-linear (Rosenbrock) least-squares minimization of

the cost function" (ref. 14). The cost function is simply a mathematical measure of how well the

model fits the data. A fit is considered good any time the 'cost' is less than 100. In most cases for

this analysis, the cost was less than 40. The flexibility of the routine allows the user to 'fix' or

'free' specified coefficients, apply a time delay, select the transfer function order, and define the

frequency range of interest. For this analysis, the coefficients and time delay were not fixed, a

zero-over-second order transfer function was selected, and the frequency range was typically

between 0.5 and 3 rad/sec.

Handling qualities and stability margins, discussed in further detail in Sections IV.B and C, were

calculated from generated frequency responses by Utility #8. Plots were generated within each

routine, as well as by using general plotting functions of Utility #19. All generated frequency

responses were automatically organized and stored in a database, which CIFER ® created and

managed.

2. Derived and Smoothed Variables Code

For the post flight analysis, a set of programs were created by Mr. Luigi Cicolani, U.S. Army/

NASA Rotorcraft Division, Ames Research Center. Among the many functions these routines

performed were the application of the necessary scaling of control signals (see table 2.4) and the

coordinate transformations of the load angular rates (see Section IV.D). Although not required

for this analysis some of the additional calculations included; application of instrumentation

correction for airspeed and altitude, calculation of the calibrated, equivalent and true airspeeds,

correction of the inertial accelerations due to sensor location and changes in center of gravity,

smoothing of angular rate and linear acceleration signals by applying a 2.5 Hz cutoff frequency,

and the derivation of the angular acceleration from the angular rate signals. A complete list of the

derived and smoothed signals for the helicopter and the load is contained in table A.2 and table

A.3, respectively.
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3. GetData

GetData, Version 3.2.5, developed at NASA Dryden Flight Test Facility, is a Fortran utility

program for manipulating time history data (ref. 17). This utility was used to extract specific

sensor signals from the flight test data files. These signals were then modified or used to

calculate other parameters necessary for analysis. GetData's ability to manipulate and merge

signal time histories and work with the compressed UNC3 data format was extensively used in

this project, in particular in the derived and smoothed signal programs.

4. XPlot

XPlot, Version 3.06, developed at NASA Dryden Flight Test Facility is an XY plotting package

designed to plot out time history and frequency response data (ref. 18). It was extensively

utilized post-flight, to plot and scrutinize the flight data. The utility allows the user to "zoom" in

and out as necessary to get a detailed look at the form and consistency of the data. XPlot also

provides a means of performing simple math functions on individual or multiple time histories.

5. Microsoft EXCEL ®

EXCEL ® was utilized as common software for the development of databases to track each test

flight, the real time and post-flight analysis results, and the CIFER ® case-name catalog. Due to

its commonality across both Macintosh and Windows operating systems, it provided a

convenient tool for this purpose.

B. HELICOPTER HANDLING QUALITIES

The bandwidth frequency (o)Bw) and phase delay (Xp) parameters were computed from the closed-

loop frequency responses of the helicopter, P/_LAr and q/_ON (fig- 4.1). These two parameters

together provide a quantitative measure of the handling qualities of an aircraft. The Aeronautical

Design Standard (ADS)-33D-PRF (ref. 19) is the current standard with regards to handling

qualities. However, it does not adequately address cargo/utility helicopters, and more

specifically, handling qualities for slung load operations. A separate program is currently in

progress to expand the coverage of this specification to include cargo/utility helicopters with and

without slung loads (ref. 20).

1. Bandwidth Frequency and Phase Delay

Bandwidth frequency is an indicator of how well an aircraft will track control inputs (ref. 21).

The larger the bandwidth the more agile the aircraft, where as, a lower bandwidth results in a

slower, smoother response. For rateresponses, the bandwidth is the lesser of the gain and phase

bandwidth frequencies, which are defined in figure 4.3. The bandwidth frequency assures at least

6 dB of gain margin and 45 degrees of phase margin from the neutral stability frequency.

Phase delay is a measure of the slope of the phase plot between the 180-degree frequency (_ls0)

and twice the 180-degree frequency (2_180), usually determined by a linear least squares fit

(ref. 19). A small phase delay, shallow slope, means that minor control deflections near the
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180-degreefrequencywill not produceasignificantphasechange.Thiscanbetranslatedinto
goodresponsepredictability.As thephasedelaybecomeslarger,smallcontroldisturbances
resultin majorchangesin thephase,andtherefore,a lesspredictableresponse.Aircraft with
largephasedelaysaremoreproneto pilot inducedoscillations(PIO)(ref. 13).Althoughthe
expressionfor thephasedelayseemsto establishawell-definedcriterion,in actualitythe linear
assumptionmadeis notalwaysvalid in this areaof thephaseplot. In addition,theslopeof the
phasecurveoftenchangesdramaticallywithin therangeof o_80 and 2o_18o.Compounding these

concerns is the fact that the data at 2o_80 is often unreliable based on the poor coherence of the

response. One possible reason for the poor coherence is the fact that since the objective of the

test is to identify the frequency response, accurate knowledge of 2o)1so is not available prior to

the flight. Therefore, the sweep range may not adequately cover this frequency. The definition of

the phase delay is shown on figure 4.3.
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Figure 4.3. Bandwidth frequency and phase delay definitions (from ref. 13).

2. Determination of Bandwidth Frequency and Phase Delay.

As mentioned earlier, the O_w and xp were determined from the closed loop response of the

helicopter; roll to lateral stick deflection (_/_SL_t)and pitch to longitudinal stick deflection (0/SLon).

Initially, the closed loop frequency responses were calculated in FRESPID using the aircraft's

angular rates (p and q) rather than the attitudes (_ and 0) because the rate variables possess

greater mid and high frequency content. The responses were then integrated by applying a 1/s
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conversionthroughCIFER®'sUtility #8.Thischoiceisbettersuitedfor thedeterminationof the
bandwidthanddelay(ref. 22).Thebandwidthandphasedelayvalueswerecalculatedby
applyingthedefinitionsdescribedaboveto theattituderesponse.In particular,for thisanalysis,
phasedelaywascalculatedby alinear,leastsquaresfit to thephasecurvearoundo)lso,asshown
in figure4.4. This particularcaseis a lateralsweepin ahoverwith the4K CONEX.Note the
poorcoherencenear 2o)1s0 and the significant change in slope between (ojs 0 and 2o)18o.
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Figure 4.4. Sample calculation of phase delay.

C. CONTROL SYSTEM STABILITY MARGINS

1. Gain Margin and Phase Margin

Gain margin is the reciprocal of the magnitude, IG(jo))I, of the open loop response at the

frequency where the phase angle is equal to -1800 (o)180) (ref. 21). In the physical sense it is "the

amount by which the pilot can change his gain without threatening the stability" of the aircraft

(ref. 13). For a system to be stable, the gain margin must be positive.

Phase margin is the "amount of additional phase lag at the gain crossover frequency required to

bring the system to the verge of instability. The gain crossover frequency (o)c) is the frequency at

which the magnitude of the open loop transfer function, IG(jo))I, is unity." In decibels, this

corresponds to when the magnitude curve crosses 0 dB. The phase margin is 180 ° plus the phase
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angleof theopenloop responseatthegaincrossoverfrequency.A positivephasemargin
indicatesastablesystem(ref. 21).

For satisfactoryperformance,it is desiredthatthegainmarginbegreaterthan6 dB andthephase
marginbegreaterthan45°. A 6dB gainmarginis a factorof two andthe45°phasemargin
correspondsto aphaseshift of-135 °.

2. Determination of Gain and Phase Margins

The identification of the control system broken loop response and subsequent determination of

the stability margins are obtained by analyzing the output of the stability augmentation system

(SAS) with respect to the mixer input. Referring to figure 4.5, the broken loop response is

defined as f(s)/e(s). An alternative, indirect method to determine f(s)/e(s) is by calculating the

error response, mixer input to the control boost output, e(s)/r(s), and applying basic control

system block diagram algebra to determine the broken loop response. Comparative analysis from

the f'u'st test flights showed a good agreement between these two methods. In general, however,

the error response method had better coherence and therefore, it was adopted for the remainder

of the analysis.

Figure 4.5. Simplified model of the helicopter.

The desired open-loop transfer function is

f(s) = G(s)H(s) (Equation 4.1)
e(s)

and

e(s) = r(s)- f(s) (Equation 4.2)

Substituting equation 4.1 into equation 4.2, eliminating f(s) gives

e(s) = r(s)- e(s)G(s)H(s) (Equation 4.3)
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Rearrangingterms

e(s.___)= 1 (Equation 4.4)
r(s) 1+ G(s)H(s)

Recalling equation 4.1 and substituting into equation 4.4, the result is

e(s) gr(s))
(Equation 4.5)

Applying equation 4.5 to the error response was done through the frequency response arithmetic

routine, Utility #9 of CIFER ®. The phase and gain margins were calculated using the CIFER ®

Utility #8. Due to the complexity of the system, multiple crossover frequencies often occurred.

In these cases, the critical crossover frequency was determined by selecting the crossover

frequency associated with the minimum margin, which occurred within the frequency range of

interest, 0.05 to 2.0 Hz (0.3 to 12.6 rad/sec). Figure 4.6 is an example of the typical broken loop

response magnitude and phase plots used for the determination of the margins. This particular

case was for a lateral sweep in a hover with the 4K CONEX.

Figure 4.6. Determination of phase and gain margins.
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D. LOAD MOTION ANALYSIS

The helicopter-load configuration with an elastic sling (fig. 4.7) is a two-body system with

twelve rigid body degrees of freedom and corresponding natural modes. The new modes due to

the load and sling consist of two oscillatory pendulum modes (lateral and longitudinal), two load

yaw modes, and three oscillatory stretching modes (one vertical and two load attitude modes)

(ref. 23). The modes of particular interest here are the two pendulum modes. One of the

complications encountered in the analysis of the pendulum modes is the need to transform or

refer the load angular velocity to the helicopter heading.

Figure 4.7. NASA 748 with CONEX external load.

1. Predicting Pendulum Mode Characteristics

Pendulum frequencies are dependent on sling length and load-helicopter weight ratio. Equation

4.6 gives an analytical estimate of the frequencies for both pendulum modes based on a point-

mass dumbbell model. The variables of the equation are: g - gravitational acceleration, 1 -

distance

(Equation 4.6)
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betweenloadandhelicopter,ml - helicoptermass,andm2- loadmass(ref. 23).Theestimated
naturalfrequenciesare1.05,1.58,1.50,and1.61rad/secfor the1K block,4K block, 2K
CONEXand4K CONEX,respectively.

Pendulumdampingdependson thecouplingwith thehelicopterattitude.This,in turn, requires
hookoffsetfrom thehelicoptercenter-of-gravity(CG)andvariesinverselywith helicopter
inertia.Linearanalysisby Cicolani (ref. 23)estimatesthedampingof the longitudinalmodeto
be5%while the lateralmodeestimatewassignificantlyhigherat 38%.

2. Determination of Pendular Motion from Flight Measurements

a. Load Axis to Helicopter Axis Transformation Approximation. The analysis of the load

response was facilitated by referring the measured load pitch and roll rates to the helicopter

heading as shown in figure 4.8. The key to this transformation was the knowledge of the relative

yaw angle between the load and the aircraft. The new axes, x2' and Y2', are in the horizontal

plane of the load body axes. Assuming small roll (_2) and pitch (02) angles then x2' is nearly that

direction in the load horizontal plan which has the current helicopter heading.

] \ X2'

P2 ,

q2

Y2'

IgI - Helicopter Heading

_g2 " Load Heading

_gr " Relative Heading

P2 " Load Roll Rate

q2 " Load Pitch Rate

P2' "Transformed Load Roll Rate

q2' "Transformed Load Pitch Rate

Transformation Eauations

P2' = P2 c°s(¥r) "q2 sin(¥r)

q2' = P2 sin(_g_) + q2 cos(_,)

Figure 4.8. Load axis to helicopter axis coordinate transformation.

b. Determination of the Pendulum Mode Damping and Natural Frequency. The pendulum mode

characteristics were obtained from the test data by assuming that within a small frequency range

near the load's natural frequency the load's response can be represented by a second order

system (equation 4.7). Even though the overall response is obviously one of a higher order

a(s) = k (Equation 4.7)
s 2+ 2¢o_.:+co°
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system,the load'spendulummotionis dominantin this frequencyrange.By makingthis
simplifying assumption,theanalysisfocuseson two well-understoodparameters,thedamping
(4) andtheundampednaturalfrequency(co,).

Utilizing theNAVFIT function in CIFER®,asecondorderfit wasappliedto theload's response,
p2'/_it,t andq2'/6Lo..Thisprocessrequiredabit of trial anderror in selectingaminimumand
maximumfrequencyfor thefit in orderto getthecostfunctionbelow 100.Thedampingand
naturalfrequencyweregivenaspartof theoutputfrom NAVFIT. Figure4.9showsanexample
of NAVFIT output.Thisparticularcasewasfor a lateralsweepin hoverwith the4K CONEX.

Magnitude - dB

re_

Phase - deg

1.0--x

FREQU[NCV(RAD/SCC)

-- LTC_OeTZ_COHABCD__LAT_P_p

....... rit

Cos_: 33,716 _a|_(HF]: 0.40652Z£.00 S.S.: 0._77697_'00 De|8_: B.0504

NUMER_TO_ DENO_Z_TC_

RE_L I_AG R_U ZM_G

--0._3997E_00 0.14934['01

2 (Z°O.IS87 , W" 1._12S (Rad/se©_

XO x

Figure 4.9. Example of second order fit to the load response.

E. NEAR REAL TIME ANALYSIS VERSUS POST FLIGHT ANALYSIS

The basic principles and procedures described above and in earlier sections generally apply to

both the real time analysis and the post flight analysis except as noted here. In order for the real

time analysis to be useful, it must be completed in a short time and provide reasonably accurate
results.

As with any time the source of data is from telemetry, data dropouts occasionally occur. The

CIFER _ analysis generally proved insensitive to minor dropouts and data spikes since these

appear as high frequency noise, outside the frequency range of interest. However, continuous

periods of excessive data dropouts are incompatible, requiring that that particular record be

removed from the analysis. Recall that "garbage in is garbage out." Eliminating sweep records,

meant fewer possible concatenations and therefore less averages, hampering the ability to reduce
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the random errors. Data dropouts were rarely a problem with the onboard data tape; therefore, it

was used as the source for the time histories during post flight analysis. A significant timesaving

was achieved by reducing the sample rate from the post flight processing rate of 100 Hz to 50 Hz

for the real time processing.

As noted earlier in this section, only a single window, sized at 20-seconds, was used during the

real time response identification. This had a two-fold effect in reducing the total processing time.

First, with only one window, FRESPID had to calculate only one response for each case;

helicopter closed loop response, broken loop response, and load response. Second, without

multiple windows there was no need to run the COMPOSITE routine. In contrast, the post flight

analysis, utilized five windows and COMPOSITE to generate an optimized response.

A comparative study was conducted between the analysis performed real time and the post flight

analysis. It wa.5 determined that the effect of data dropouts, lower data sample rate, and single

window on the near real time analysis results was minimal. Listed in table 4.1 is a sample set of

results comparing the real time analysis to the post flight analysis. Differences do exists, as one

would expect, however, they are relatively small. Overall, the comparison is good and it

validates the real time processing procedure.

Flt

Table 4.1. Comparison of near real time results versus post flight results.
i

Maneuver Analysis coBw Xp PM to c GM toJso _ to.

170 Hover, Lon Sweep, No Load

170 30 k-ts, Lon Sweep, No Load

170 30 kts, LOn Sweep, 4K CONEX

172 Hover, Lat Sweep, 4K CONEX

172 30 kts, Lat Sweep, 4K CONEX

Real Time 2.67 0.19 82.15 2.23 36.88 8.09

Post Flight 2.24 0. ! 9 87.41 2.00 22.45 6.5

Real Time 2.50 0.18 110.76 i.88 17.27 6.73

Post Flight 2.38 0.15 I 10.50 1.71 20.29 6.38

Real Time 3.17 0.20 91.08 2.76 19.93 7.18

Post Flight 3.06 0.20 106.60 2.20 20.38 7.02

Real Time 2.68 0.18 126.30 0.82 15.39 9.95

Post Flight 2.86 0.19 125.69 0.79 13.82 9.81

Real Time 4.16 0.16 121.89 0.79 13.84 9.75

Post Flight 3.90 0.19 118.69 0.82 14.32 9.97

0.19 1.47

0.11 1.42

0.19 !.60

0.16 1.58

0.21 1.48

0.2O 1.35
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V. RESULTS

Thefollowing paragraphssummarizethedataobtainedduringtheflight testprogramthat
pertainsto theaircrafthandlingqualities,controlsystemstabilitymargins,andthesuspended
loadmotion.A significantamountof databeyondthatrequiredto investigatetheseareasexists
andis availablefor futurework. A summaryof theairspeedatwhicheachloadwasflown is
givenin table5.1.Exceptin the loadpendulummotionplots,datafor theno loadbaseline,1K
block, 4K block,2K CONEX, and4K CONEXis presented.Sinceonly theCONEX wasflown
with the loadinstrumentationpackage,only thosecasesarepresentedin theplotsof load
damping and natural frequency. A complete listing of all resultant quantities is available in

Appendix F. All data presented was determined based on a SISO response, using five windows

(10, 20, 25, 30, and 40 secs) and concatenating all available sweep records of the same

maneuver, which were of sufficient quality.

Table 5.1. List of airspeeds at which each load was flown.

Load Airspeed

No Load

1K Block

4K Block

2K CONEX

4K CONEX

Hover, 30, 50 and 80 kts

Hover and 80 kts

Hover and 80 kts

Hover

Hover, 30, 50, 60 and 70 kts

A. HELICOPTER HANDLING QUALITIES

Figure 5.1 shows the effect changing airspeed has on the bandwidth frequency and phase delay

for the various loads. The pitch bandwidth was generally less than the roll bandwidth.

Comparing the no load case with the 4K CONEX in pitch, there is an appreciable increase in

bandwidth for the loaded aircraft. Whereas, comparing the same cases in roll shows some loss

due to changes in the load configuration. The phase delay, for the 4K CONEX case in both axes,

remained fairly constant between 0.15 and 0.20 seconds, but was higher than the no load case,

indicating a slight degradation of the response to control inputs. Continuation of this trend could

lead to possible PIO as pilot workload increases.
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Figure 5.1. Handling qualities as a function of airspeed.
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As mentioned in Section IV.B, ADS-33D does not fully address utility/cargo helicopters and

external load operations. However, since work is currently being performed in an attempt to

extend the specification to this class of helicopters and operations, the handling qualities

determined from these flight tests were plotted in the specification format. Figures 5.2 through

5.5 show the results plotted against the requirement for "all other MTEs (mission task elements)

and a UCE (usable cue environment) greater than one and/or divided attention operations." This

requirement is the same for hover, low speed and forward flight and is the most restrictive of all

the specifications associated with the "all other MTE" category (ref. 19). The actual flight

conditions of the test flights would likely have been rated as a UCE of one and the operations

classified as fully attended. The frequency sweep maneuver, however, is not an ADS-33D testing

requirement. Therefore, this MTE and UCE requirement was chosen as a representative,

conservative case. For comParison, the no load baseline case is shown in each plot.

For the 4K CO/flEX, 2K CONEX and the 4K Block, figures 5.2, 5.3 and 5.4, it is noted that in

pitch the addition of the load actually improves the response of the helicopter. There is an

increase in both the bandwidth and the phase delay that drives the response further into the Level

1 region for all airspeeds. In roll, however, it is noted that the response is actually degraded

somewhat. In particular, there is a significant decrease in the hover bandwidth, driving that case

toward the Level 1/Level 2 boundary. The loss of bandwidth is so significant for the 4K Block

case, figure 5.4, that the response does enter the Level 2 region. This demonstrates that for these

configurations the roll response is more critical than pitch in regards to handling qualities.

This trend does not hold for the 1K Block case, figure 5.5. Here, in pitch, the bandwidth is

decreased and the phase delay is increased by the addition of the load. This combined effect is to

drive the response from Level 1 to Level 2. At hover, the response is degraded to a point well

within Level 2. In roll, there is no significant change in response; only a slight increase in phase

delay with little change in the bandwidth.
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The difference in the trends may be due to the differences in the load and sling geometry. Figure

5.6 depicts, to scale, the three configurations. Recall, internal ballast was used with the CONEX

to increase its weight from 2K to 4K, and the 1K Block was slung using a different bridle
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assembly. From this drawing, many differences can be seen, in particular the wetted area of the

loads and the distance between the load and the helicopter. The area differences will effect the

aerodynamic drag and downwash effects experienced by the load. The sling length, discussed

previously, greatly influences the pendulum response of the load and thus the response of the

helicopter to the load.

Ca_ Xmk

24.68 A

_,.¢dn

_In I \

1K Block

t

16-65fl

tmli:,.o 
Za4fl

TomV'tew

4K Block

Carm Hmk

i

!

16.01 R

i

_r

i
I'_------'--- &411ft ..... i

Top Vrw

2K and 4K CONEX

Figure 5.6. Scaled drawing of the three external load configurations.
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B. CONTROL SYSTEM STABILITY MARGINS

Figure 5.7 compares the results of the phase and gain margins and their associated crossover

frequencies for the pitch response. In general, there was only a small decrease in the margins for

the 4K CONEX case in comparison to the no load baseline. The addition of the 1K Block to the

system at hover, however, resulted in a phase margin increase of 39 degrees with an associated

decrease in the cross-over frequency of 1.3 rad/sec. As with the handling qualifies, this may be

due to differences in the configurations of the loads, in particular the sling length. At 80 knots,

the results for the 1K Block were in line with the other loads. Further flights at this condition will

determine if this is a repeatable tendency.

The roll response margins and crossover frequencies are presented in figure 5.8. Unlike the

longitudinal case, a significant reduction in both margins in roll is apparent between the no load

and 4K CONEX cases. Phase margin was reduced by as much as 37 degrees (30 knots), while

gain margin decreased by as much as 4 dB (hover). At hover the 1K Block caused a decrease in

the phase margin of 35 degrees, opposite its effect in pitch. Due to the Black Hawk's large

stability margins, these reductions did not place the overall stability of the helicopter in jeopardy.

However, for helicopters designed with much smaller stability margins, reductions of this

magnitude represent a serious degradation in the system and could possibly lead to an unstable
condition.
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Figure5.7Controlsystemstabilitymargins-- pitch.
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C. LOAD MOTION CHARACTERIZATION

Before looking at the results, it is necessary to point out a few of the limitations encountered

during the analysis of the load pendulum motion. First, as noted in Section IV.D.2a, knowledge

of the relative yaw angle between the load and the helicopter is critical to the determination of

the damping and natural frequency of the load pendular modes. Early in 1997, while researching

the instrumentation installed on the helicopter, it was learned that a bias problem existed with the

heading gyro used in the helicopter instrumentation rack. Evidently, each time the helicopter test

instrumentation is powered up, the gym stabilizes on a different heading (ref. 24). It was thought

that by simply referencing the initial gyro reading with that of the pilots heading gyro, a

correction could be made. Unfortunately, later test flights proved that not only is there a bias

upon initialization, but that during the flight, the gyro drifts. In an attempt to compensate for this,

a post flight compass calibration record was taken and the pilot's heading noted just prior to shut

down. Assuming the drift rate was constant throughout the flight, a linear correction was applied

to the heading signal. This correction was applied to the data from Flights 172 and 173. Although

only limited data is available, it appears that on top of the bias and drift, the drift rate is not

consistent from one flight to the next. In short, the heading signal is unreliable at the best and a

replacement for the gyro should be sought before further flight testing is performed.

A second problem was associated with the fact that at the higher airspeeds the load motion itself

was small except in yaw. Above 50-knots, the load tended to trail slightly aft and remain in a

stable position under the aircraft. In fact, according to the pilots comments, supported by the

recorded data, the CONEX was minimally excited in pitch and roll above 50 knots. The main

motion was the sling wind-up experienced. At some points, up to nine full revolutions were

noted. This brings another dimension of complexity to the puzzle; in essence, the sling geometry

was constantly changing. As the number of twists varied, so too did the total distance between

load and helicopter, and the geometry of the sling. It may prove beneficial to fly the load with the

swivel again on future flights.

With the above comments in mind, the calculated load pendulum damping is shown in figure 5.9.

One apparent observation is the difference between the lateral and the longitudinal mode. In all

cases, pitch damping was less than roll damping, as predicted by analysis. However, the

simulation and linear analysis predicted a much lower longitudinal damping. Although further

testing is required, the apparent trend is one of a minimum damping in both pitch and roll at low

airspeeds, then increasing with increasing airspeed, with the pitch case as the most critical. It is

important to remember that these results are strongly dependent upon load and sling

configuration.
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Figure 5.9. Load pendulum mode damping.

Figure 5.10 shows the undamped natural frequency associated with the load's pendulum mode.

The frequency compares well with the predicted values of 1.5 and 1.6 rad/sec for the 2K and 4K

CONEX, respectively. The frequency is nearly the same for both the pitch and roll modes,

decreasing slightly with increasing airspeed.
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Figure 5.10. Load pendulum natural frequency.
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D. SIMULATION

1. Simulation Model

Mr. Cicolani is currently developing the simulation model used for comparison. It is a generic

helicopter called 'ESD.' This is a linearized, uncoupled, six-degree of freedom model, which is

stable in response to any control input. Rotor actuator dynamics and rotor downwash are not

incorporated. The load was modeled as a 4,000-pound box with inertia matching that of the 4K

CONEX. It was subjected to a drag force only, with minimal yaw. A four-leg inelastic sling

matching the actual test flight sling geometry was incorporated into the system as well. The

actual flight test control input time histories were used to drive the simulation and the results of

this initial effort are discussed below.

2. Comparison of Test Data to Simulation

Comparison of the time histories of the longitudinal and lateral control sweep inputs and the

resulting on-axis helicopter and load time domain rate responses are shown in figures 5.11 and

5.12, respectively. Good agreement is shown in both the helicopter's pitch rate and roll rate

responses. In the lateral case, the load response also demonstrates good agreement in amplitude

and damping. The load pitch rate response comparison indicates a significant difference between

the test flight data and the simulation, particularly with respect to damping and magnitude of the

response. Improved aerodynamic models of the load may help to reconcile the differences.

46



2.000 --

1.000 --

0.000 -

-1.000 -

-2.000 -
• Longitudinal Sweep Input ............................................

I I

10.00 -

5.00-

0.00-

-5.00 -

-10.00 -

•. • ............. Flight Test ....................... _ ......... l" " I ._ ...................

Simulation ] '. /_ J] |_ . '.

i|Billd. :

"_ . "_ _ • ,_ : , II__ i..__

40.00 --

20.00-

0.00-

-20.00 -

-40.00 -

0.0

...............Flight Test

Simu,a!ioo i t

-- Load Pitch Rate Response '

I I I I I

20.0 _.0 _.0 _.0 1_.0

Figure 5.11. Comparison of flight test and simulation time histories -

longitudinal control sweep, hover with the 4K CONEX.

47



2.000 --

1.000-

0.000-

-1.000 -

.2.000 - Lateral Sweep Input ......

I I

20.00--

10.00

0.00

-10,00

-20.00 -

............F.gUtT_,t ............. ! ............ _ ........ , i _;:..............
_ Simulation _ _ _ ' "_-_":*': i_

.............. : .............. : .... _....... : . . 'E."!', .. .... .....

_::_. • _ _ •

"..,, . . \ • , :

40.00 --

20.00

0.00

-20.00

-40.00

............... Flight Test

• _ Simulation ............. i " '_

_ .

'Load' Roii itaie Re;po"si .....

Figure 5.12. Comparison of flight test and simulation time histories -

lateral control sweep, hover with the 4K CONEX.

48



VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This report presents a detailed description of the first phase of flight testing associated with the U.S./

Israeli MOA, Task 8: Flight Mechanics of Helicopter/Sling-Load Dynamics. The focus of this early

testing consisted of five main points. The first was to determine the effect the load has on the

helicopter's handling quantities, quantified by the bandwidth frequency and phase delay parameters.

The second point was to observe the effect the load has on the helicopter's control system stability

margins, quantified through the phase and gain margins. Third, characterization of the load's lateral

and longitudinal pendular motion was sought by evaluating the motions damping and natural

frequency. Demonstration of a near-real time flight test data analysis and system identification

technique was the fourth goal of the project. The last point was to compare flight test with simulation

results and begin investigation of improvements to the current simulation model.

Included in this report is a detailed description of the equipment used, covering the UH-60A Black

Hawk helicopter, test loads, slings and the helicopter and load instrumentation. A brief history of the

flight test program from Flight 150 in April 1995 to Flight 173 in August 1997 was outlined

followed by a discussion of frequency domain flight testing. The basic flight profile was laid out,

highlighting the frequency sweep technique. Data acquisition specifics were also covered,

emphasizing the multiple data paths and the redundancy in the recording of the data stream. The

discussion of the analysis described all the software tools utilized, focusing on CIFER ®. CIFER ®

produced the frequency responses from the time history data and facilitated the calculation of the

desired parameters. Differences between the near-real time and post flight analysis were noted.

The work done for this first phase of the MOA Task 8 has shown:

Although variations exist in the results between the near-real time and the post flight analysis

methods, the overall conclusion is the real time analysis technique demonstrated in this program

did provide expeditious and satisfactory answers.

Handling qualities results show that the roll axis tends to be the more critical than the pitch axis,

especially at hover, with the exception of the 1K Block case that showed the opposite tendency.

In pitch, the addition of the CONEX improved the helicopter's response, where in roll the

response was degraded.

The stability margins of the control system are degraded by picking up an external load. In

particular, at low airspeeds, the roll axis is more sensitive than pitch, with a decrease of up to 37

degrees of phase margin and four dB of gain margin. These results parallel those of the handling

qualities.

• The pendulum damping of the load is lowest at low airspeeds and in the pitch axis.

• The natural frequency of the load's pendulum motion is almost identical for both pitch and roll

axis, with a slight decrease noted as airspeed increases.
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Currentsimulationmodelsthe lateralresponseof the helicopter and load and longitudinal

response of the helicopter very well. However, the model significantly under-predicts the

damping of the load in the longitudinal case.

B. RECOMMENDATIONS

Although a significant amount of data was obtained in this stage of the Task, it is not possible to

draw any all-encompassing conclusions about external load operations at this point. Several reasons

exist for this. First and foremost, the results are very dependent upon the load and configuration. In

addition, the load instrumentation package was only flown with the CONEX, and only the CONEX

with ballast was flown at more than two airspeeds. Thus, now that the majority of the groundwork

has been laid, future flight testing should concentrate on increasing the database size. Emphasis

should be placed on acquiring further data on the 1K Block and empty CONEX at various airspeeds,

matching the ballasted CONEX database, as well as utilizing the load instrumentation package on the
block loads.

Effort needs to be put into improving available instrumentation. In particular, instrumentation better

suited to provide load attitude and improvement in the directional heading of the helicopter. The latter

may simply be a matter of determining a more accurate prediction of the compass drift or complete

replacement of the instrument.

For the near-real time analysis, the main recommendation is to stream line the user interaction and

data entry process. One possible solution may be to develop a 'front end' for CIFER ®. The idea

being that since most of the data entry is repetitive in nature, it should be possible to condense the

entries. This could possibly be a single page with a few lines indicating which time histories to use,

window size, signals, and plotting options. This would then be used in one simple stroke to run the

FRESPID routine of CIFER ® and produce the desired frequency responses. Use of modern GUI

techniques may add to the versatility of this real time analysis, add-on software package. Additional

improvements in running the analysis real time would be realized as the software becomes available

on more operating systems. Taking CIFER ® into the field, say via a PC or laptop, would certainly

open the door to many more possibilities.

Extracting the load motion damping and natural frequency at airspeeds below 50 knots proved

possible and produce fairly good results. Above 50 knots however, the inability to generate a

pendular response with sufficient magnitude combined with the wind up of the sling significantly

limited the extraction of these parameters for the 4K CONEX case. Work is on going to improve

these results. Use of the swivel may be reintroduced into the flight procedure to eliminate the

excessive amount of wind-up experienced during the higher forward airspeeds. The lighter 2K

CONEX may produce responses that are more dramatic at the higher airspeed.

The work comparing the actual flight test data with the simulation data is truly in its infancy.

Although comparisons showed significant agreement between test data and simulation, many

improvements can be accomplished in the future. These improvements include using a stabilized

UH-60A Black Hawk model vice the ESD model, incorporating load aerodynamic data acquired

through wind tunnel tests, use of an elastic sling configuration, and incorporation of a rotor
downwash model.

5O



As afinal note,it is intendedthatall significantdatafromthesetestswill be incorporatedinto theTilt
RotorEngineeringDatabaseSystem(TRENDS).TRENDSis aninteractive,flight test,relational
databasedevelopedbyNASA to supportrotorcraftresearchstudies.It is designedto provideall of
theprojectinformationauserneedswithouthavingto contacttheflight testengineer.By including
theslungloaddatain TRENDSit will becomeavailableto amuchlargeraudiencein astandardized,
readilyaccessibleformat(ref. 25).

51



52



APPENDIX A. SIGNAL LISTING FOR NASA 748, LOAD, AND STRIP CHARTS
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HELICOPTER PCM MEASUREMENTS (37)

ITEM CODE MNEMONIC DESCRIPTION

DI00 LONGSTK Lonsimdmal Control Po_itim

DI01 LATSTK Lateral Control Position

DI02 PEDAL Dinx:fional Cot'arol Position

D 103 COLLSTK Collective Control Positio_

13003 STABLR Stabflatm" Angle

DM00 DMIXE Lonsitud_d Mixer Input Posit

DM01 DMIXA Lateral Mixer haput Posisfim

DM02 DMIXR Diremonal _ Input POs/_

DPO0 PSFWD Prinmy Sel'vo. Forward

DPOI PSLAT Pmmv Servo, lateral

DP03 PSAFT _ Servo, Aft

R021 TRIP Tail Rotor Impress Pitt&

DS00 SASE Longitudinal SAS Output

DS01 SASA Lateral SAS Output

DS02 SASR Directional SAS Output

DAO0 PITCHATT Pilcb Atlitude

DA01 ROLLATr Roll Attitude

DA02 HEADING Airm_ Heading

DAA0 ALPHA AL,cr_ Angle ofAaw, k

DSS0 BETA Airmdt Sideslip Angle

DR00 PTCHRATE Aim-a_ Pitch Rate

DR01 ROLLRATE Airmdt Roll Rate

DR02 YAWRATE AL.waR Yaw Rate

DAC0 PTCHACC Pitch Angular Acceleration

DAC l ROLLACC Roll Angular Accderation

DAC2 YAWACC Yaw Angulm" Accelermon

DL00 AXCG X-ax/s Liaear CG Aocdenu/on

DL01 AYCG Y-axis Linem" CG Accelent_on

DL02 AZCG Y-exis Linear CG Acceleration

VCO I V001 Aircraft _ Bo_a

H001 H001 Static Pressme, Boom (Altitude)

VX03 LSSX LASSIE Foovant

VY03 LSSY LASSIE Lateral Airsp_d

VZ03 LSSZ LASSIE Vertical

TI00 TICO Stagmtion Temp_mm:

HCO3 RALT Radar

HKLD HKLD Hook Load

POSITIVE RANGE SAMPLE
UNITS

DIRECTION MIN MAX RATE

AFT % 0 100 209

RIGHT e/e 0 100 209

RT PEDAL % 0 100 209

LIP % 0 ICO 209

TE DOWN deg -10 40 209

AFT % 0 ICO 209

RIGHT % 0 100 209

RT PEDAL % 0 l DO 209

UP % 0 ICO 209

UP % 0 ICO 209

UP % 0 lco 209

LT PEDAL deg 0 I CO 209

AFT % 0 ICO 209

RIGHT % 0 100 209

RIGHT % 0 ICO 209

NOSE UP dog -50 50 209

RIGHT deg -100 ICO 209

NOSE RT deg 0 360 209

NOSE UP deg -100 I00 209

NOSE LT deg - 100 100 209

NOSE UP deg/s -50 50 209

RIGHT deS/s -50 50 209

NOSE RT dew's -50 50 209

NOSE UP deg/s2 .-600 600 209

RIGHT dcWs2 -200 200 209

NOSE RT deg/s2 -100 lco 209

FORWARD g's -2 2 209

RIGHT g's -2 2 209

UP g's -2 4 209

in Hg 0 2 209

inHg 20 32 209

FORWARD kts -35 165 209

RIGHT kts -50 50 209

UP f'dmm -300 2000 209

*C -20 50 209

fl 0 1500 209

Its

LOAD PCM MEASUREMENTS (9)

ITEM CODE

DALI

DAL2

DAL3

DRLI

DRL2

DRL3

AL01

AL02

AL03

MNEMONIC

PANGL

RANGL

YAWANG

PITCHRATE

ROLLRATE

YAWRATE

LNGACC

LATACC

NORMACC

DESCRIPTION

Load RollAngle

Lol_t Yaw AnsIc

Load Pitch Rate

Load Roll Rate

Load Yaw Rate

Load Lonsitudinal Aocele_ion

Load _ Ac_'lemion

Load Nommt Ac._ea_m

DIRECTION UNITS

NOSE UP

mGm
NOSE P.U3HT &g

NOSE UP des/s

RIGHT deg/s

NOSE UP deg's

FORWARD g's

RIGHT g's

UP _'s

RANGE

MIN [ MAX

Table A1. Telemetry signals for NASA 748 and load.

SAMPLE

RATE

26O

260

26O

26O

26O

26O

26O

26O

26O
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HELICOPTER DERIVED AND SMOOTHED MEASUREMENTS (51)

MNEMONIC

XAIN

)(BIN

XPIN

XCIN

XABOOST

XEBOOST

XPBOOST

XCBOOST

DMIXAIN

DMIXEIN

DMIXPIN

DMIXCIN

PSFWDIN

PSFAFTIN

PSLATIN

PSTRIN

DR00S

DR01S

DR02S

DR00D

DR01D

DR02D

DL00S

DL01S

DL02S

DVISNX

DVISNY

DVISNZ

VICB

VCALB

VEB

VTB

UBODYBC

VBODYBC

WBODYBC

VT

LSSXC

LSSYC

V00I S

v'rBs

VICBS

H001S

HDB

HDBS

HMHRWS

HMHRWD

H003D

TI00S

TA

TASMTH

SIGMAB

DESCRIPTION

Lateral Stick Posi6oa

Longitudinal Stick Position

Pedal Position

Collective Podfion

Lmeral Output from Boost Actuator

Longitudinal Output from Boo_ Actuator

Pedal Output from Boost Ac_'umor

Collec_ve Outl_ from Boom Actuator

Lateral Mix_ Input

Longitudinal Mixer Input

Pedal Mixes Input

Collective Mixer Input

Servo Ouqx_, Forvard

Servo Ou_ A_

Servo Ouq_ Lateral

Ser¢o Output, Tall Rotor

Smoothed Pitch Rate, CutoffFmq. = 2.5 I-Iz

Smoothefl Roll Rate, CutoffFreq. = 2.5 Hz

Smoothed Yaw Ra'_e, Cutoff Freq. = 2.5 Hz

Derivative of DR00S

Derivauve of DRO I S

Derivative of DR02S

Smoothed X-zvds Lm_tr Accel., Cutoff Freq. = 2.5 Hz

Smooched Y-axis Linear Accel., CmoffFrcq. = 2.5 Hz

Smoothed Z-axis Lineer Aocel., CutoffFreq. = 2.5 Hz

X-axis Inertial CG Acceleration

Y-axis Ine,/al CG Accelera_on

Z4cr, Js lne,ial CG Acceleration

Boom Indicated Airspeed (IAS)

Boom Calibrated Airspeed (CAS)

Boom Eqtavalcnt Airsplmd (EAS)

Boom True Airspeed (TAS)

CG Velocily, u Compon_nl from Boom Data

CG Veloci_. v Component from Boom Data

CG Velocity, w Compommt from Boom Data

Estimated TAS for Boom and/or Lassie

u Comp Calibrated Airspeed from Lassie Data

v Comp Calibrated Airspeed from Lassie Data

Smoothed Boom Airspeed, CutoffFreq = 2.5 Hz

True Airspeed fi_m Smoothed Data

lndic_l Airspeed from Smoodmd Data

Smoothed Boom Static Pressure, CutoffFrcq. = 0.05 Hz

D_si W Altitude fromBoom Data

Demi_/Altitude from Smoothed Dam

PressureAlfiux_ from Smoothed Dam

Rate of ClmnSe ofAhitude (Dmvafive of HMHRWS)

Rate of Change of Alti_de ('Derivativeof H003)

Smoothed StasnEion Temperature, CutoffFreq. = 2.5 Hz

Ambient Temperana'e from Boom Data

Ambient Temperature from Smoothed Data

I_mshy Ratio fr¢_ Boom Dam

POSITIVE

DIRECTION

RIGHT

AFT

RIGHT

UP

RIGHT

AFT

RIGHT

UP

RIGHT

AFT

RIGHT

UP

FORWARD

AFT

RIGHT

NOSE UP

RIGHT

NOSE RIGHT

NOSE UP

RIGHT

NOSE RIGHT

FORWARD

RIGHT

UP

FORWARD

RIGHT

UP

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

RIGHT

UP

FORWARD

FORWARD

RIGHT

UNITS

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

deg/sec

deg/sec

dcg/scc

deg/scc:

deg/sec:

des/see 2

g's

g's

g's

filscc 2

Pdsec 2

f-t/see 2

kts

k_s

k'ts

kts

ft/scc

f't/sec

ft/sec

k_

kts

fi

fl

fl

ft/scc

ft/scc

°C

°C

Table A.2. Helicopter derived parameters and filtered signals.
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LOAD DERIVED AND SMOOTHED PARAMETERS (16)

MNEMONIC

DAL3C

DRLIS

DRL2S

DRL3S

DRLID

DRL2D

DRL3D

AL01S

AL02S

AL03S

PS2H! DEG

P2P

Q2P

PS2P

ABSPQ2

ANGKASK2

DESCRIFrlON

Load Heading Corrected for 360 $tm_ Trmsi_ts

Smootl_ Load Pitch Pate,, CutoffFrtq. = 2_5 Hz

Smoothed Lond Roll Rate, CutoffFreq. = 2.5 Hz

Smoothed LoM Yaw Rate, CutoffFn:q. = 2.5 Hz

D_vative ofDRL 1S

Dmvntive of DRL2S

Dttivative of DRL3S

Smoothtd Load X-axis Aeeel., CW.offFrtq. = 2.5 l-lz

SmoothM Load Y-nxis Accd., CmoffFml. = 2.5 l-lz

Smoothed Load Z-_ds Aeed., CutoffFrcq. = Z5 Hz

Continuous Load Heading, No Jumps at 0/360 dng

Load Roll Rate Tin.reformed to HeM Heading Axis

Load Pitch Rate Trmsformed to Hdo Heading Axis

Load Heading Minus Helicopter l-leading

Magmtud© of Load Roll and Pitch Rates

Angle btwn Load Apparent Gravity and Load Vertical

POSITIVE

DIRECTION

RIGHT

LIP

RIGHT

RIGHT

RIGHT

NOSE UP

RIGHT

UNITS

d_
des/see

dee/see

des/see

deg/see 2

deg/sec 2

degtsec 2

g's

g's

g's

deg/sec

dee/see

deg

Table A.3 Load derived parameters and filtered signals.
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Table A.4. Strip chart signal listing.
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APPENDIX B. DETAILED DRAWINGS OF THE 4K BLOCK AND CONEX.
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Figure B. 1. 4K block load
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Figure B.2. CONEX dimensions (sheet 1 of 3).
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Figure B.3. CONEX dimensions (sheet 2 of 3).
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APPENDIX C. MOA TASK 8 FLIGHT TEST DATABASE SUMMARY
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Table C. 1. MOA Task 8, flight test database summary.

SUMMARY BY FLIGHT NUMBER

'FLIGHT# DATE LOAD

150 4/14./95 None

151 5/_95 lkF.xt=nal

152 5/11/95 1 k Inte_al

153 6/23/95 I k lntemal

154 8110/95 I k Inl_mal

155 l/l0/96 None

156 I/23/96 4k External

157 3/20/96 None

158 4/25/96 4k Extera _

159 6/G96

160 7/19/96

161 9/30/96

162 I 0t16F)6

163

164

165 1/16/97

166 7/25/97

167 7/2_/97

4kExtelnal

2k Conex

2k Couex

4 k & 6k F.xlet'_

2k Conex

168 7/21_r7 4k CClI_X

169 8/6/97 4k Cortex

170 8f7197 None

8 / I_/_// NCm¢Ill

AIR_EED CONTROL AXIS

0 DATA LOST

0 Pitch

0 Roll

0 Yaw

0 Collective

0 Pitch
0 Roll

0 Yaw

0 Collcetive

80 Pitch

80 Roll

80 Yaw

80 Collective

80 Pitch

80 Roll

0, 10,20, 30, 40 Trim

0, 20, 40, 60, 80, 100, 120 Trim

0, 20,40, 60, 80,100, 120 Pitch

0, 20,40, 60, 80,100, 120 Roll

0, 20,40, 60, 80,100, 120 Yaw

0thru 130 sa.'ps of 10

0,60, 80, 100

0,60,80,100

0,60,80, 100

0, 60, 80, 100

0,60.80, 100

0

0

0

0

0

80

80

80

80

80
80

80

80

0,30,40, 50,60

40

0

0

0

0

0

0

0

0

0

0,30
0

30

0,30,50

0,3_50

0,30,50

0,30,50

CONTROL INPUT

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps, Doublets

Sweeps

La_e Check

Stew, Doublets

Steps, Doublets

Steps, Doublets

Trtm A_pecd & Altitude Calibralim

Trim

Pitch Steps, Doublets

Roll Steps, Doublets

Yaw Steps, Doublets

Collective Steps, Doublets

Trim

Pitch Sweeps, Steps, Doublets

Roll Sweeps, Steps, Doublets

Yaw Sweeps, Ste_, Doublets

Collective Sweeps, Stel_$,Doublets

Trim

Pitch ISweeps, Steps, Doublets (SAS on & off

Roll Sweeps, Steps, Doublets (SAS on & off

Trtm

Pitch Sweeps. Steps, Doublets

Roll Sweeps, Steps, Doublets

Yaw Sweeps, Steps, Doublets

Colleclive Sweeps, Stel_ , Doublets
Trim

Post Mamte_ce Ftmotonal O_..k Flight

Roll Sweep
P_I Matlltemln ¢_ F uil_llonlU Check F]l gllt

Trim Hook Calibrat_o n

Cortex on F_klifl

Trim

Pitch Sweeps, Steps, Doublets

Roll Sweeps, Steps, Doublets

Collex:tive Doublets

Irma

Pitch Swe_s, Steps, Doublets
Roll Sweeps, Steps, Doublets

Collective Doublets

Trim

Roll Sweeps

Pitch Sweeps

Trim

Pitch Sweeps, Steps, Doublets

Roll Sweeps, Steps, Doublets

Collective Doublets

U,.bU 111111

0, 3 0 Pitch Sweeps
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TableC.2. MOA Task8,flight testdatabasesummary(continued).

SUMMARY BY FLIGHT NUMBER (con't)

FLIGHT # [ DATE [ LOAD AIRSPEED CONTROL AXIS CONTROL INPUT

172 8/20/97

173 8/21/97

4k Conex 0,30, 50 Trim

30, 50 Pitch Sweeps, Steps, Doublets

0,30, 50 Roll Sweeps, Steps, Doublets
4k Conex 0,60, 70 Trim

0,60, 70 Pitch Sweeps, Steps, Doublets

60, 70 Roll Swee_ Steps, Doublets

SUMMARY BY LOAD

LOAD ]FLIGHT, ] DESCRIPTION

Nolle

lk Blott:

4k Block

2k Conex

4k Cortex

155

157

163

165

170

171

,ASSIE 0owairspeed) instrumentation check.

Mrspeed and altitude calibration flight.

:'ost mainteaance functional check t_ght.

:_ost maintenance functional check t_ght.

-lover, 30 kts, and 50 kts, pitch, ton a_d oolleetive swoeps, steps and doublets.

['rim and pitch sweeps at hova" and 30 kls - Pilot proficieavzy tra_aing.

151 -lover, 4 axis swee_ and doublets, lk bad external.

152 Hover, 4 axis _ anddoublets, lk load internal.

153 80 kts, 4 axis swee_ and doublets, I k load mternal.

154 80 kts, pitch and roll sweeps and doublets, I k internal.

160 80 kts, pitch and roll sweeps, sL-ps, and donblets, lk load exlemal.

156 Hover, 20 kts, 40 kls,60 kts, 80 kts, 100 ktsand 120 kts,4 axisstepsanddoublets,4k load external

158 Hover, 60 kts, 801as,.and 100kls, 4 axisstepsanddoublets,4kloadextemal

159 Hover, 4 axis a,,eeps, steps an d doublets, 4 k load external

161 80 kts, 4 axis sweeps, steps and doublets, 4k toad external.

166 Hover, hook calibration flight with 6k and 4k load external.

162 Hover, 30 los, 40 kls, 50 kts and 60 kts, trim conditions, first Conex box flight

164 40 kts, roll sweep.

167 Ho v_, pitch and roll swee_, steps an d doublets.

168

169

172

173

Hover, pitch and roll sweeps, steps and doublets, and collective doublets.

Roll s'weeps in hover, pitch sweeps at 3 0 kts. Swivel installed.

30 kts and 50 kts, pitch and roll sweegs, steps and doublets. Roll sweep in hover.

50 kts and 70 kts, pitch and roll sweeps, steps and doublets. Pitch sweeps in hover.
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APPENDIX D. PILOT'S TEST FLIGHT DATA CARD
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Figure D. 1. Pilot's test flight data card (sheet 1 of 2).
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Figure D.2. Pilot's test flight data card (sheet 2 of 2).

71



72



APPENDIX E. NEAR-REAL TIME DATA ANALYSIS PROCEDURES
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A. OVERVIEW

One of the main goals of Task 8 of the U.S./Israel MOA was to modify existing hardware and

software to allow for the capture and immediate analysis of flight test data in near-real time. The

necessary modifications are complete and a protocol has been established for executing the

analysis. The entire procedure was demonstrated during actual flight tests with good results. As

experience in the routine increases, improvements allowing the process to be streamlined and

easily modified to support any flight test operation will be incorporated. This appendix

specifically details the procedures followed to carry out the near-real time analysis at Ames

Research Center during this proje,.t. Detailed information on the data acquisition set up and
hardware and software used is contained in Section Eli and IV of the main text.

There are three results of interest for the near-real time data analysis with respect to Task 8. The

fLrst is to determine the effect of the load on the handling qualities, the bandwidth, and the phase

delay of the helicopter itself. Second is to determine the effect of the load on the stability margin

of the automatic flight control system (AFCS), in particular the stability augmentation system

(SAS). Third, it is desired to characterize the motion of the load through its damping ratio and

natural frequency. These results are obtained from the frequency sweeps performed at each flight

condition and do not rely on the other maneuvers such as the steps and doublets.

Armed with these results, the ground-based flight test engineer will be able to give the aircrew

two vital pieces of information. The first is how close the maneuver was to driving either the

load or the helicopter unstable. Along with this information would be a recommendation

concerning whether or not to proceed to the next planned maneuver. Second, in the process of

analyzing the data, the engineer can determine if the frequency content of the maneuver was

satisfactory. If it was not, the engineer can relay what changes are required in order to produce

an output with the sufficient frequency content.

B. TYPICAL SCENARIO

It was determined through trial and error and from the needs of the project that having three

flight test engineers worked well, each dedicated to particular duties. The lead was responsible

for running the flight, talking to the pilots, and relaying any results and concerns. The second

was responsible for monitoring and marking the strip charts. This was the individual who would

back the pilots up with respect to sweep frequency limitations. The third individual was the data

analyst. He was solely responsible for processing the data from the Loral all the way through

CIFER ®. At this point, it is assumed that the user has a basic understanding of CIFER ® and its

utilities.

Before aircraft movement but after all systems are on line, the ground engineer must get a

compass calibration record of about ten seconds. This is accomplished by simply starting and

stopping the recording with the trigger switch connected to "fox-gpx6." The ground engineer

running the analysis from "fox-sparrow" will then run the routine 'run_cal.' This will generate a

compass correction to be applied to each of the following records.
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Oncein flight, for eachsweepthepilot will call outwhenheis aboutto start,usuallyby saying
"dataon." Theflight testengineersimultaneouslybeginsrecordingdataby useof thetrigger
switch.Thepilot will thenexecutethemaneuverandcall outwhencomplete,usuallyby saying
"dataoff." Theengineerrunningtheanalysiswill thenexecutetheroutine 'run_real_time.'This
will convertthedatafrom countsto engineeringunits,applynecessaryscalingandcalibrations,
decimatetherecordto 50Hertz, andtransfertherecordfrom "fox-gpx6" to "fox-sparrow." (At
thetimeof this work "fox-sparrow"wastheonly machinewhichwascompatiblewith running
CIFER®.)Two UNC3formattedtimehistoryfilesaregeneratedandplacedin thedirectory
'/u_sparrow/cifer/time_hist.'Oneiscalled 'EU_RXXX' andtheotheris called 'cifer_in.dat.' A
third file, 'getdataXXX.bin,' which is acopyof theoriginal file from 'fox-gpx6,' is placedin the
homedirectory.XXX refersto therecordnumber.Note,eachtime 'run_real_time'is executedit
createstheuniquefiles 'getdataXX.bin'(theoriginal record,all datain counts)and'EU_RXXX'
(UNC3format, readyfor use),butover-writesthefile 'cifer_in.dat.'Whenall thesweepsin a
particularaxisat aparticularflight condition have been completed, the engineer can run CIFER ®

and begin the analysis. In the mean time, the flight can continue with the steps and doublets.

As noted in the main text, a typical flight profile consists of a trim point, three frequency sweeps,

two steps, and two doublets for each axis of interest at each flight condition. It is recommended

that the ground station match the aircraft with respect to the record number of each maneuver.

Therefore, although in the analysis only the frequency sweeps are used, it's a bookkeeping

dividend to take a record every time the aircraft takes one.

With the time histories available, CIFER ® is then run. It is useful to note that one can enter

several inputs and outputs for each run of FRESPID and select the responses to be calculated.

This will save time and reduce possible typing errors. Another time saver is to avoid generating

plots from within a CIFER ® routine such as FRESPID. Use the utility function #19 instead to do

the plot generation. Also, note that by only trying to do single input single output (SISO)

responses and using only a single window, a significant timesaving can be made. Although this

does not produce the best results, they were shown to be adequate. A little prior planning and

analysis of the problem to be observed during the flight test, should provide adequate

information for window size selection (see also ref. 14).

C. STEP-BY-STEP PROCEDURES FOR RUNNING CIFER ® NEAR-REAL TIME

1. Log on to "fox_sparrow"

Username:

Password:
cifer
xxxxxx (See Sunny Ng for password)

2. Start the Windows environment. >openwin [cr]

3. Set up the windows, as you like. See figure E. l for an example. Note that each window is set

to a different directory.

4. Set up the "xterm" window for CIFER ® (required). >xton [cr]
>xterm [cr]
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If you wantto beableto usethewindow from which"xterm" is started,usethecommand
"xterm&" insteadof just "xterm."

5. Run CIFER®.

A) In thenew "xterm" window,initiate CIFER®:

B)

>cifer [cr]

Ensurethefile pathnamesarecorrectlyentered(Utility #11).

database
plots
jobs
timehistory

/u_sparrow/cifer/cifroot/data/db

/u_sparrow/cifer/cifrootljobs/plots

/u_sparrow/cifer/cifroot/j obs

/u_sparrow/cifer/time_hist

C) Create a new database as necessary.

D) CIFER ® should now be ready for the first run.

6. Processing the Data.

A) Before a record is ready for CIFER*, it must be processed. This is done by use of the

routines 'run_cal' and 'run_real_time.' To begin, change directory in one of the windows

(not the 'xterm window') to

>cd uh60_slung2_flight.dir [cr]

Once a lock is established with the aircraft's telemetry signal, have the ground station

operator run a "rt_cal" to sample and average 5 seconds of DA02 to be used as the

heading bias. When the operator completes this, execute

>run_caI [cr]

This routine creates a small data file (uh60_caI.dat) to be used by "run_real_time." You

will be prompted for the following information, which is available from the pilots:

PS1C - initial magnetic heading of the helicopter

TOW - take-off gross weight

XMOMTO - the initial moment as calculated in preflight

(ESFW - engine start fuel weight - to be deleted)

B) After a maneuver is completed and the record of the event generated, execute

>run_real_time [cr]
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,

8.

When asked, enter the appropriate record number (should match with the flight card).

This program processes the raw data file, converting units and decimating the file to 50

hertz. It will take a few moments depending on the size of the file. The output from this is

two files:

EU.RXXX the processed data file, where XXX is the record number entered

cifer_in.dat a temp file, over-written each time "run_real_time" is executed.

Perform the desired analysis with CIFER ®.

Plotting.

A. Plots are sent from "fox-sparrow" to the printer in the test facility control room.

B. CIFER ® postscript files can be printed with the command:

>lpr <filename>

C. When CIFER ® sends a plot to the screen, that window must be closed in order to

return to CIFER ® proper and the original 'xterm' window.

D. To get a hard copy of the workstation screen, expand the plotting window as large as

possible, leaving enough room on an active window to execute the following:

>dumpscreen [cr]
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Figure E. 1. 'fox-sparrow' screen setup for real time analysis.
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APPENDIX F. SISO ANALYSIS RESULTS SUMMARY
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Table F. 1. Summary of results from SISO analysis of flight data.

CLOSED LOOP RESIDONSE

• i _ue 8 6 dB BW
'_l.JIAirspeed _gv

Freqlmacy

NONE LON 0 2.2437 2.8424 0.1917 1068910 0.2022 22"96 6.5000

87A143 1.9994

30 2.3816 3.5620 0.1513 164,0550 O.3814 20.2886 6.3814

110.4960 1.7051

50 2.2019 2.6766 01590 158.0340 0.2843 24.3017 7.1839

103.3536 1.4306

80 24236 01594 26.3125 5.5340

tAT 0 5.1803 3.3319 0.1862 143.0560 0.2555 18.9243 9.6510

141.8840 1.0065 20.5780 10.O909

30 4.2098 4.2549 0.1115 179.0500 0.2076 16.0331 10.4097

180.5420 0.4188 16.7882 10.7485

1668'110 0.4553

155.0780 0.8149

50 4.1006 4.2704 0.1211 1666190 0.2399 15.2483 96938

135.4870 1.0966 15.2337 9.7561

15.6586 10,0899

80 4.1386 4.25114 0.1967 100.3266 1.8725 t312so ,;,787.4

IKINT LON 80 2.4236 01594 26.3125 5.5340

LAT 80 4.1386 4.2584 0.1967 100.3266 1.8725 13.1280 9.7824

IKEXT LON 0 1.5957 2.1560 0.2111 107.7850 0.2676 23.2885 5.3622

126.4250 0.6671

80 2.9552 2.3147 0.1910 92.9259 1.0549 21.3386 7.3097

21.8763 7.3999

LAT 0 6.2517 3.3968 0.2079 186.0530 0.3578 12.7220 9.4959

106.4800 0.8565 12.9402 9.5773

80 4.4018 4.2968 0.1372 109.5830 1.1749 12.8234 102362

4KEXT LON 0 2.5745 2.9191 0.2083 125.5130 0.2062 146013 65947

84.3969 2.3646 146942 6.6489

80 3.2378 2.3454 0.1693 120.4680 0.2178 144612 7.1556

105.4240 1 3124

106.0460 1.3254

LAT 0 6.7287 1.7291 01988 213.7760 0.3909 11.8537 9.9193

1042136 1.0631

BROKEN LOOP RESPONSE LOAD MOTION

Pkste _ C,al- co.. Damping co Flight CIFER

Maria," (_) Marlg/a(_) (_) Ratio (ra_te¢) Number Dambme

170 FF_748

170 PF_748

170 PF_748

153 PF 748

170 PF_748

170 PF748

I.AT 0

30

50

60 6.0217 4.2822 0.1511 114.3180 0.8725 13.4955 10.0869 Poor Coheamoe

165.0730 1.9836 13.7003 10.2519

164.1400 1.9989

150.8520 2.1934

70 5.8938 38652 01477 1126000 0.7848 12.5880 10.6445 Poor Cohelence

12.4501 10.7260 I

170 PF_748

153 PF 748

153 PF 748

153 PF 748

151 PF_748

160 PF748

151 PF_748

160 PF 748

159 PF_748

161 PF748

159 PF_748

80 6.2953 3.8699 0.1612 97.2334 1.1399 111050 101749 161 PF 748

2K CONEX LON 0 2.5285 2.9155 0.1984 821574 2.2471 17.3476 6.3342 0.0986 14855 167 PF 748

LAT 0 6.1223 2.8787 0.1815 159.6050 0.2719 16.3388 9.8-293 0.1394 16356 167 PF748

136.6660 07563 16.5184 9.9146

136.6350 0.7608 16.7572 10.0008

4K CONEX /,AT 0 6.3751 2.9981 0 1947 197.9030 0.20_9 143627 9.8012 0.2040 15173 169 PF748

(w/swivel) 110.9170 0.8401

LON 30 2.7219 3.3251 0.1982 150.5870 0.3154 19.3820 7.1820 0.1294 1.4466 169 PF_748

107.3730 1.1391

120.7650 1.6220

108.8280 21068

4K CONEX LON 0 2.6586 3.0290 01675 146.6600 0.1601 209999 71329 0.1259 15162 173/168 PF_748

86 3652 2 4329

30 3.0600 3.3330 01981 160.4080 0.3208 203759 70181 01073 14163 172 PF_748

I05.8920 1.2226 204617 70888

119.9020 1 6176

106.6040 2.1983

50 2,8926 3.0071 0.1825 166.1520 0.2249 235966 7,5243 0.1597 14433 172 PF748

99.3068 2.5269

60 3.1115 2.7462 01956 143.2270 0.1961 16.2084 7.2246 Poo¢" C ohefea",c¢ 173 PF_748

103.1608 1.1805

120.9720 1 6557

102.1835 2.1999

70 3 0813 27208 01718 171.7470 0.'007 17d 142 7,0339 Pool Coherenoe 173 PF748

104.5440 I ._.277

111,0600 1.4529

91.4931 2.7689

6 1524 2.8208 0.1902 194.4470 0.2399 14.6642 9.7277 0.1646 1.5287 172/168 PF 748

126.1600 0.8000

58716 3.9008 0.1924 181.4740 0.2831 143195 99737 02016 13455 172 PF748

118.6930 08176

5.6543 3.7743 0 15(K_ 170.6330 0.2128 12.9268 9.8433 01994 13145 172 PF 748

112.1930 08348 13.0158 9.9277

173 PF748

173 PF 748
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